
Presentation of data using 
statistical procedures learned in class

(dependent variable = self esteem)

1. Assumptions of regression

2.  Diagnostics to determine whether the 
assumptions are being met

Material left to cover in semester:

assumptions are being met

3.  Solutions to use when an assumption 
isn’t being met, including variable 
transformations, interactions, and  Dummy 
Variables

Curvilinear transformations,
Dummy Variables,

andand
Interactions

Curvilinear transformations

Most common are polynomial 
transformations which are 
simply models with the X 
transformed to a certain 

“power” (e.g., squared, cubed).

For example, a 
quadratic polynomial is:

Y = a + b1X + b2X2

and a cubic model is:

Y = a + b1X + b2X2 + b3X3

Note that whenever you 
add a higher power, you 

must always include terms 
f  ll h  l  d  for all the lower order 

powers.



The quadratic polynomial is used 
when the relationship between the 
dependent and independent variable 

has one curve.  For example, this 
might include the relationship 

between income and age.

The cubic polynomial is used 
when the relationship between 
the dependent and independent 

variable has two curves  variable has two curves. 

Multiple Regression:

Usin  n min l i bl sUsing nominal variables
(creating dummies)

Nominal variables cannot 
be included in an OLS 

regression equation in the 
same way as interval ratio same way as interval-ratio 
variables since they are 

not linear variables.

However, there is a way of 
“transforming” the nominal variable 

so that it can be included.

This requires creating a separate 
variable for each category of the variable for each category of the 

nominal variable (called dummy 
variables). These can then be 

included in the regression equation 
(although one of the newly created 
“dummy” variables must be left out 

of the regression equation)

For example:  if we want to include 
the variable “race” in our regression 
equation and it is coded:

1 = white
2 = black2 = black
3 = other

then we would create three 
variables, one for each category of 
the variable “race”



To create the new variables:
In SPSS, go to transform, then “recode 

into another variable”

we then use the dichotomous variable 
race to create the variable ”white” where:

1 = white
0 = black
0 = other

That is, for the new variable, if a person 
is white he/she will be coded “1” and 

coded “0” if anything other than white

Similarly we create a new variable 
called “black” where:

1 = black
0 = white
0 = other

and the variable “other” where:

1 = other
0 = white
0 = black

With these variables created 
we can then include the 

concept of “race” into the 
regression equation by 

including two of the three 
new “race” variables in the 

regression.  

The one variable we leave out 
can be examined and 

interpreted by viewing the 
“a” coefficient. 

Rationale for leaving out one of 
the dummy variables:

One variable must be left out so 
that the regression equation can 

calculate the regression line.  

If all the dummy variables are 
included in the regression 

equation, it will not be 
mathematically possible to create 

a regression line.

Interpreting Dummy Variables:
Suppose our output shows the 

following:
Job

Satisfaction
= 4.02 + .32X1 + -.18X2

Where:  X1 = Blacks and X2 = Others and the t 
values for both are significant (the left out values for both are significant (the left out 
dummy variable is whites)

Job satisfaction for Whites = 4.02 (average)

Blacks job satisfaction on average is significantly 
higher than whites at 4.34 (4.02 + .32)

Others job satisfaction on average is significantly 
less than Whites at 3.84 (4.02 - .18)

Interpreting the “t” value for dummy 
variables in the regression equation

The t test associated with a given 
dummy variable tests for the 

difference between the mean of the 
dummy variable in the equation and the dummy variable in the equation and the 
mean of the dummy variable left out of 

the regression equation.

(remember that the t tests for continuous 
variables tests whether the independent 

variable significantly increases the variance 
explained in the dependent variable)



How do we know if the dummy variables 
significantly reduce error in the 

dependent variable?

We can use an f test to compare the R2

when only the continuous variables are 
included in the regression equation  to included in the regression equation, to 
the R2 when the continuous variables 

and the dummies are included.  If there 
is a significant difference, then the 
dummy variables have significantly 
increased the variation explained 

beyond that of the continuous variables.

Which dummy variable should 
be omitted?

One choice is to omit that 
variable that you have the most 

interest in statistically comparing 
to those that are includedto those that are included.

It has been found that leaving out 
a dummy variable with a small 
number of cases, can create 

biased regression coefficients.

How is the “a” coefficient 
interpreted when there are 
continuous variables in the 

regression equation?

N t   i  ti  Note: a regression equation 
with both dummy variables and 

continuous variables is 
referred to as an analysis of 

covariance (ANCOVA)

The same as if only the dummy 
variables were included.

In a regression equation with no
dummy variables, the “a” coefficent is 
the average score of the respondents 

when each of the independent 
l lvariables equals zero. 

When dummy variables are included 
the “a” coefficient represents the 

average for the left out dummy 
variable after controlling for the 

independent (continuous) variables.

A third type of “transformation” 
can be thought of as interactions.

In a linear regression model, a one 
unit increase in X1 always produces 

a change of B1 units in Y.

Now let’s suppose the effect of X 
on Y depends on the value of 
another independent variable.

For example, the effect of age on 
income may depend on the person’s 

education.  Or, in other words, there 
is an interaction between age and 

education in their effects on income.

We could also say that the slope of 
income on age is steeper for those 

with more education.



If we want to test our example we 
could create the following model:

Y = a + B1age + B2 educ. + B3age*educ.

This equation has both age and 
education entered in the usual 

way, but also has the product of 
age and educ. as an additional 

variable.

Once the regression has been 
performed the first thing to do 

is exam the p value for the 
product variable.

If it i  i ifi t    If it is significant, you can 
conclude that there is strong 

evidence that the effect of age 
on income depends on the level of 

education.

Interpreting regression results with 
an interaction variable

Each variable involved in the 
interaction variable (called the 

ff  l ) h     main-effect variables) has its own b 
coefficient and they each have a 

special (and often not very useful) 
interpretation when an interaction 

variable is present.  

More specifically, we would say 
that the b coefficient for age can 
be interpreted as the effect of 

age when education is zero.  

Y    b   b d   b * d

Similarly, the coefficient for 
education can be interpreted as 

the effect of education when age 
is zero.

Y = a + b1age + b2 educ. + b3age*educ.

Typically, we are not concerned 
about the significant effects of 
the two main effects or of their 

interpretation.  

R h    i d i  Rather we are interested in 
interpreting the b for the 

interaction variable (however 
the main effect variables should 

remain in the equation).

The way to interpret the b for the product 
variable is to calculate the effect of age 

on income for different values of 
education.

Mathmatically, the effect of age on income 
is:

Income = b1age + b2educ + (b3 * education)

b3 represents the estimate for the 
product term; let’s look at this example 

further:



The effect of age on income for a The effect of age on income for a 
specific value of education, let’s say 

9 years, would be:
(b1age + (b3 * education) = Y)

-1,770 + (207 * 9) = $93

What would be the effect of age on 
income for 12 years of school? 

Here are additional effects that have 
been calculated

How to interpret interactions 
with dummy variables

Dummy variables are treated 
just like continuous variables just like continuous variables 
by creating a product term.  

However the interpretation is 
somewhat different.

In Table 8.5, what is the dependent variable and the 
independent variables?

Interpetation: The coefficient for the product term 
($3,912) is the additional effect of schooling when 

the person is married, so the effect of schooling for 
married respondents is:

(b1 Schooling + (b2 * Married) = Y
-980 + 3,912 = $2,932

Each additional year of schooling brings $2,932 more 
income for those married.  For those not married, 
income goes down -980 for each year of schoolingincome goes down 980 for each year of schooling.

What about the effect of being married?

Interpetation: The coefficient for married 
(-$48,592) says that among respondents with no 

education, those who are married make about 
$49,000 less than those who are unmarried.  

Further, among those with, lets say, 6 years of 
schooling, they make about $25,000 less.

b1 Married + (b2 * Schooling) = Yb1 Married + (b2  Schooling) = Y
-48,592 + (3,912 * 6) = -25,120



The End

The End.


